Purdue University College of Pharmacy and NorthStar Medical Radioisotopes Announce Collaborative Agreement Expanding Nuclear Pharmacy Training Curriculum

Beloit, Wis. and West Lafayette, Ind., August 20, 2019 – NorthStar Medical Radioisotopes, LLC and Purdue University's College of Pharmacy today announced a collaborative agreement that expands the nuclear pharmacy training curriculum at Purdue University. As part of the program, NorthStar will bring its RadioGenix System to Purdue University for trainees to learn how to operate the system and to test planned enhancements to the equipment.

“NorthStar’s RadioGenix System is a revolutionary technology that will help prepare future pharmacists and radiopharmacists who will be involved in the nuclear pharmacy production of technetium-99m (Tc-99m) and iodine-131 (I-131),” said Eric L. Barker, Ph.D., Dean of Purdue University’s College of Pharmacy. “We are extremely grateful for our partnership with NorthStar.”

The College of Pharmacy has already collaborated with NorthStar on several projects over the last few years and is excited to have a closer working relationship and to be given the opportunity to provide feedback about the RadioGenix System and early testing of planned enhancements.

“We have collaborated with Purdue University College of Pharmacy on several projects over the last few years and we are excited to be given the opportunity to collaborate more closely and to be given the feedback about the RadioGenix System and early testing of planned enhancements,” said Kevin Mahoney, President and CEO of NorthStar Medical Radioisotopes. “We look forward to further strengthening our collaboration with Purdue University in the future.”

NorthStar Medical Radioisotopes is very excited to collaborate with Purdue University's prestigious College of Pharmacy in advancing educational opportunities and providing input into their nuclear pharmacy curriculum. We look forward to further strengthening our collaboration with Purdue University in the future.

About the Purdue University College of Pharmacy

For almost 135 years, the Purdue College of Pharmacy has trained the world’s elite pharmacy leaders through acclaimed curricula, preeminent faculty and active industry partnerships. The College produces elite pharmacy leaders who are improving lives worldwide in rewarding, top-paying healthcare careers. The Purdue College of Pharmacy is consistently ranked among the top pharmacy programs in the nation.

About the RadioGenix® System

The RadioGenix System is an innovative, high tech separation platform that is approved for processing non-uranium/non-highly enriched uranium molybdenum-99 (Mo-99) for the production of the important medical radioisotope, technetium-99m (Tc-99m). Prior to availability of RadioGenix technology, the U.S. supply chain for Mo-99 has been subject to frequent and sometimes severe interruptions which negatively impact patient healthcare. Approved by the U.S. Food and Drug Administration in 2018, the RadioGenix System is the first and only on-site, automated isotope separation system of its kind for use with non-uranium/non-highly enriched uranium based Mo-99, designed to help alleviate shortage situations and expand domestic supply.

The RadioGenix® System is a technetium Tc-99m generator used to produce Sodium Pertechnetate Tc 99m Injection, USP. Sodium Pertechnetate Tc 99m Injection is a radioactive diagnostic agent and can be used in the preparation of FDA-approved diagnostic radiopharmaceuticals.

Sodium Pertechnetate Tc 99m Injection is also indicated in

- Adults for Salivary Gland Imaging and Nasolacrimal Drainage System Imaging (dacryoscintigraphy).
- Adults and pediatric patients for Thyroid Imaging and Vesicoureteral Imaging (direct isotopic cystography) for detection of vesicoureteral reflux.
Allergic reactions (skin rash, hives, or itching) including anaphylaxis have been reported following the administration of Sodium Pertechnetate Tc 99m Injection. Monitor all patients for hypersensitivity reactions.

Radiation risks associated with the use of Sodium Pertechnetate Tc 99m Injection are greater in children than in adults and, in general, the younger the child, the greater the risk owing to greater absorbed radiation doses and longer life expectancy. These greater risks should be taken firmly into account in all benefit-risk assessments involving children. Long-term cumulative radiation exposure may be associated with an increased risk of cancer.

Temporarily discontinue breastfeeding. A lactating woman should pump and discard breastmilk for 12 to 24 hours after Sodium Pertechnetate Tc 99m Injection administration.

Sodium Pertechnetate Tc 99m Injection should be given to pregnant women only if the expected benefits to be gained clearly outweigh the potential hazards.

Only use potassium molybdate Mo-99, processing reagents, saline and other supplies, including kits, provided by NorthStar Medical Radioisotopes. Do not administer Sodium Pertechnetate Tc 99m Injection after the 0.15 microCi of Mo-99/mCi of Tc-99m limit has been reached or when the 12 hour expiration time from elution is reached, whichever occurs earlier.

For Full RadioGenix® System Prescribing Information, click here or visit


NorthStar Medical Radioisotopes is a nuclear medicine technology company committed to providing the United States with reliable and environmentally friendly radioisotope supply solutions to meet the needs of patients and to advance clinical research. The Company’s first product is the RadioGenix® System, an innovative and flexible platform technology initially approved by the U.S. Food and Drug Administration in February 2018 for the processing of non-uranium/non-highly enriched uranium based molybdenum-99 (Mo-99), the parent isotope of technetium-99m (Tc-99m), which is currently the most widely used diagnostic radioisotope for medical purposes. NorthStar’s proprietary and patented technologies include non-uranium based molybdenum-99 domestic production methods, patented separation chemistry systems, patented sterilization systems and a technology platform that potentially allows expanded product offerings to provide solutions in both the diagnostic and therapeutic markets. Founded in 2006 and based in Beloit, Wis., NorthStar Medical Radioisotopes, LLC is a wholly-owned subsidiary of NorthStar Medical Technologies, LLC. For more information, visit:


For NorthStar Medical Radioisotopes, LLC

Corporate:

Lisa Holst

678-471-9027