Purdue University College of Pharmacy and NorthStar Medical Radioisotopes Announce Collaborative Agreement Expanding Nuclear Pharmacy Training Curriculum

Beloit, Wis. and W. Lafayette, Ind., August 20, 2019 – NorthStar Medical Radioisotopes, LLC and Purdue University's College of Pharmacy today announced a collaborative agreement for the development of an advanced nuclear pharmacy training curriculum. This new curriculum will provide nuclear pharmacy students with hands-on experience and training in the use of NorthStar's RadioGenix System, which is approved by the U.S. Food and Drug Administration (FDA) for the production of technetium-99m (Tc-99m). The RadioGenix System is an innovative, high tech separation platform that is approved for processing non-uranium/non-highly enriched uranium molybdenum-99 (Mo-99) for the production of the important medical radioisotope, technetium-99m (Tc-99m).

“NorthStar’s RadioGenix System provides a valuable educational tool and real-world experience for students who are preparing to enter the field of nuclear pharmacy,” said Dr. Eric L. Barker, Dean of Purdue University’s College of Pharmacy. “We look forward to our partnership with NorthStar and the opportunity to bring the latest advancements in radiopharmacy production techniques to our students.”

“The Purdue College of Pharmacy is providing NorthStar with feedback about the RadioGenix System and early testing of planned enhancements. We are excited to collaborate with Purdue University’s prestigious College of Pharmacy in advancing educational training for the nuclear pharmacy profession,” said Eric White, President and CEO of NorthStar Medical Radioisotopes. “This expands the work that we have already been doing with Purdue University, and we look forward to further strengthening our collaboration in the future.”

“We are excited to collaborate with Purdue University’s prestigious College of Pharmacy in advancing educational training for the nuclear pharmacy profession,” said Eric White, President and CEO of NorthStar Medical Radioisotopes. “This expands the work that we have already been doing with Purdue University, and we look forward to further strengthening our collaboration in the future.”

“NorthStar’s RadioGenix System provides a valuable educational tool and real-world experience for students who are preparing to enter the field of nuclear pharmacy,” said Dr. Eric L. Barker, Dean of Purdue University’s College of Pharmacy. “We look forward to our partnership with NorthStar and the opportunity to bring the latest advancements in radiopharmacy production techniques to our students.”

For almost 135 years, the Purdue College of Pharmacy has trained the world’s elite pharmacy leaders through acclaimed curricula, preeminent faculty and active industry partnerships. The College produces elite pharmacy leaders who are improving lives worldwide in rewarding, top-paying healthcare careers. The Purdue College of Pharmacy is consistently ranked among the top pharmacy programs in the nation.

The RadioGenix System is an innovative, high tech separation platform that is approved for processing non-uranium/non-highly enriched uranium molybdenum-99 (Mo-99) for the production of the important medical radioisotope, technetium-99m (Tc-99m). Prior to availability of RadioGenix technology, the U.S. supply chain for Mo-99 has been subject to frequent and sometimes severe interruptions which negatively impact patient healthcare. Approved by the U.S. Food and Drug Administration in 2018, the RadioGenix System is the first and only on-site, automated isotope separation system of its kind for use with non-uranium/non-highly enriched uranium based Mo-99, designed to help alleviate shortage situations and expand domestic supply.

The RadioGenix® System is a technetium Tc-99m generator used to produce Sodium Pertechnetate Tc 99m Injection, USP. Sodium Pertechnetate Tc 99m Injection is a radioactive diagnostic agent and can be used in the preparation of FDA-approved diagnostic radiopharmaceuticals.

Sodium Pertechnetate Tc 99m Injection is also indicated in

- Adults for Salivary Gland Imaging and Nasolacrimal Drainage System Imaging (dacryoscintigraphy).
- Adults and pediatric patients for Thyroid Imaging and Vescicoureteral Imaging (direct isotopic cystography) for detection of vescicoureteral reflux.
Allergic reactions (skin rash, hives, or itching) including anaphylaxis have been reported following the administration of Sodium Pertechnetate Tc 99m Injection. Monitor all patients for hypersensitivity reactions.

Radiation risks associated with the use of Sodium Pertechnetate Tc 99m Injection are greater in children than in adults and, in general, the younger the child, the greater the risk owing to greater absorbed radiation doses and longer life expectancy. These greater risks should be taken firmly into account in all benefit-risk assessments involving children. Long-term cumulative radiation exposure may be associated with an increased risk of cancer.

Temporarily discontinue breastfeeding. A lactating woman should pump and discard breastmilk for 12 to 24 hours after Sodium Pertechnetate Tc 99m Injection administration.

Sodium Pertechnetate Tc 99m Injection should be given to pregnant women only if the expected benefits to be gained clearly outweigh the potential hazards.

Only use potassium molybdate Mo-99, processing reagents, saline and other supplies, including kits, provided by NorthStar Medical Radioisotopes. Do not administer Sodium Pertechnetate Tc 99m Injection after the 0.15 microCi of Mo-99/mCi of Tc-99m limit has been reached or when the 12 hour expiration time from elution is reached, whichever occurs earlier.

For Full RadioGenix® System Prescribing Information, click here or visit

NorthStar Medical Radioisotopes is a nuclear medicine technology company committed to providing the United States with reliable and environmentally friendly radioisotope supply solutions to meet the needs of patients and to advance clinical research. The Company’s first product is the RadioGenix® System, an innovative and flexible platform technology initially approved by the U.S. Food and Drug Administration in February 2018 for the processing of non-uranium/non-highly enriched uranium based molybdenum-99 (Mo-99), the parent isotope of technetium-99m (Tc-99m), which is currently the most widely used diagnostic radioisotope for medical purposes. NorthStar’s proprietary and patented technologies include non-uranium based molybdenum-99 domestic production methods, patented separation chemistry systems, patented sterilization systems and a technology platform that potentially allows expanded product offerings to provide solutions in both the diagnostic and therapeutic markets. Founded in 2006 and based in Beloit, Wis., NorthStar Medical Radioisotopes, LLC is a wholly-owned subsidiary of NorthStar Medical Technologies, LLC. For more information, visit: www.northstarnm.com.

For NorthStar Medical Radioisotopes, LLC

Corporate:

Lisa Holst

Vice President Sales and Marketing

678-471-9027
Purdue University College of Pharmacy and NorthStar Medical Radioisotopes Announce Collaborative Agreement Expanding Nuclear Pharmacy Training Curriculum

Published on Purdue College of Pharmacy (https://www.pharmacy.purdue.edu)

lholst@northstarnm.com

Priscilla Harlan
781-799-7917
pharlan@shiningrockllc.com

Maria Munoz, Communications Manager
765-496-0525
munoz28@purdue.edu